
Package: StochBlock (via r-universe)
March 1, 2025

Type Package

Title Stochastic Blockmodeling of One-Mode and Linked Networks

Version 0.1.2

Date 2023-01-20

Maintainer Aleš Žiberna <ales.ziberna@fdv.uni-lj.si>

Description Stochastic blockmodeling of one-mode and linked networks
as implemented in Škulj and Žiberna (2022)
<doi:10.1016/j.socnet.2022.02.001>. The optimization is done
via CEM (Classification Expectation Maximization) algorithm
that can be initialized by random partitions or the results of
k-means algorithm. The development of this package is
financially supported by the Slovenian Research Agency
(<https://www.arrs.si/>) within the research programs P5-0168
and the research projects J7-8279 (Blockmodeling multilevel and
temporal networks) and J5-2557 (Comparison and evaluation of
different approaches to blockmodeling dynamic networks by
simulations with application to Slovenian co-authorship
networks).

License GPL (>= 2)

Imports blockmodeling, doParallel, doRNG, foreach, Rcpp (>= 1.0.0)

LinkingTo Rcpp, RcppArmadillo

Encoding UTF-8

RoxygenNote 7.2.1

SystemRequirements C++11

NeedsCompilation yes

Author Aleš Žiberna [aut, cre]
(<https://orcid.org/0000-0003-1534-6971>), Fabio Ashtar
Telarico [ctb] (<https://orcid.org/0000-0002-8740-7078>)

Date/Publication 2023-01-24 10:20:12 UTC

Repository https://aleszib.r-universe.dev

RemoteUrl https://github.com/cran/StochBlock

1

https://doi.org/10.1016/j.socnet.2022.02.001
https://www.arrs.si/
https://orcid.org/0000-0003-1534-6971
https://orcid.org/0000-0002-8740-7078

2 findActiveParam

RemoteRef HEAD

RemoteSha 03dd47306b1821de99d59a914f9b586862fec868

Contents

findActiveParam . 2
ICLStochBlock . 3
llStochBlock . 5
stochBlock . 7
stochBlockKMint . 9
stochBlockORP . 12
weightsMlLoglik . 15

Index 17

findActiveParam Finds the active model’s parameters

Description

Finds the active model’s parameters

Usage

findActiveParam(M, n, k, na.rm = TRUE)

Arguments

M matrix

n number of units (equal to number of M’s rows)

k parameters to retrieve

na.rm logical, whether to ignore NA data

Value

An array containing the parameters

ICLStochBlock 3

ICLStochBlock Function that computes integrated classification likelihood based on
stochastic one-mode and linked block modeling. If clu is a list, the
method for linked/multilevel networks is applied. The support for mul-
tirelational networks is not tested.

Description

Function that computes integrated classification likelihood based on stochastic one-mode and linked
block modeling. If clu is a list, the method for linked/multilevel networks is applied. The support
for multirelational networks is not tested.

Usage

ICLStochBlock(
M,
clu,
weights = NULL,
uWeights = NULL,
diagonal = c("ignore", "seperate", "same"),
limitType = c("none", "inside", "outside"),
limits = NULL,
weightClusterSize = 1,
addOne = TRUE,
eps = 0.001

)

Arguments

M A matrix representing the (usually valued) network. For multi-relational net-
works, this should be an array with the third dimension representing the relation.

clu A partition. Each unique value represents one cluster. If the nework is one-
mode, than this should be a vector, else a list of vectors, one for each mode.
Similarly, if units are comprised of several sets, clu should be the list containing
one vector for each set.

weights The weights for each cell in the matrix/array. A matrix or an array with the same
dimmensions as M.

uWeights The weights for each unin. A vector with the length equal to the number of units
(in all sets).

diagonal How should the diagonal values be treated. Possible values are:

• ignore - diagonal values are ignored
• seperate - diagonal values are treated seperately
• same - diagonal values are treated the same as all other values

limitType Type of limit to use. Forced to ’none’ if limits is NULL. Otherwise, one of
either outer or inner.

4 ICLStochBlock

limits If diagonal is "ignore" or "same", an array with dimensions equal to:

• number of clusters (of all types)
• number of clusters (of all types)
• number of relations
• 2 - the first is lower limit and the second is upper limit

If diagonal is "seperate", a list of two array. The first should be as described
above, representing limits for off diagonal values. The second should be similar
with only 3 dimensions, as one of the first two must be omitted.

weightClusterSize

The weight given to cluster sizes (logprobabilites) compared to ties in loglikeli-
hood. Defaults to 1, which is "classical" stochastic blockmodeling.

addOne Should one tie with the value of the tie equal to the density of the superBlock be
added to each block to prevent block means equal to 0 or 1 and also "shrink" the
block means toward the superBlock mean. Defaults to TRUE.

eps If addOne = FALSE, the minimal deviation from 0 or 1 that the block mean/density
can take.

Value

The value of ICL

See Also

llStochBlock; weightsMlLoglik

Examples

Create a synthetic network matrix
set.seed(2022)
library(blockmodeling)
k<-2 # number of blocks to generate
blockSizes<-rep(20,k)
IM<-matrix(c(0.8,.4,0.2,0.8), nrow=2)
clu<-rep(1:k, times=blockSizes)
n<-length(clu)
M<-matrix(rbinom(n*n,1,IM[clu,clu]),ncol=n, nrow=n)
clu<-sample(1:2,nrow(M),replace=TRUE)
plotMat(M,clu) # Have a look at this random partition
ICL_pre<-ICLStochBlock(M,clu) # Calculate its ICL
ICL_pre
res<-stochBlock(M,clu=clu) # Optimizing the partition
plot(res) # Have a look at the optimized partition
ICL_post<-res$ICL # Calculate its ICL
ICL_post
We expect the ICL pre-optimisation to be smaller:
ICL_pre<ICL_post

llStochBlock 5

llStochBlock Function that computes criterion function used in stochastic one-
mode and linked blockmodeling. If clu is a list, the method for
linked/multilevel networks is applied

Description

Function that computes criterion function used in stochastic one-mode and linked blockmodeling.
If clu is a list, the method for linked/multilevel networks is applied

Usage

llStochBlock(
M,
clu,
weights = NULL,
uWeights = NULL,
diagonal = c("ignore", "seperate", "same"),
limitType = c("none", "inside", "outside"),
limits = NULL,
weightClusterSize = 1,
addOne = TRUE,
eps = 0.001

)

Arguments

M A matrix representing the (usually valued) network. For multi-relational net-
works, this should be an array with the third dimension representing the relation.

clu A partition. Each unique value represents one cluster. If the network is one-
mode, than this should be a vector, else a list of vectors, one for each mode.
Similarly, if units are comprised of several sets, clu should be the list containing
one vector for each set.

weights The weights for each cell in the matrix/array. A matrix or an array with the same
dimensions as M.

uWeights The weights for each unit. A vector with the length equal to the number of units
(in all sets).

diagonal How should the diagonal values be treated. Possible values are:

• ignore - diagonal values are ignored
• seperate - diagonal values are treated separately
• same - diagonal values are treated the same as all other values

limitType Type of limit to use. Forced to ’none’ if limits is NULL. Otherwise, one of
either outer or inner.

limits If diagonal is "ignore" or "same", an array with dimensions equal to:

6 llStochBlock

• number of clusters (of all types)

• number of clusters (of all types)

• number of relations

• 2 - the first is lower limit and the second is upper limit

If diagonal is "seperate", a list of two array. The first should be as described
above, representing limits for off diagonal values. The second should be similar
with only 3 dimensions, as one of the first two must be omitted.

weightClusterSize

The weight given to cluster sizes (log-probabilities) compared to ties in loglike-
lihood. Defaults to 1, which is "classical" stochastic blockmodeling.

addOne Should one tie with the value of the tie equal to the density of the superBlock be
added to each block to prevent block means equal to 0 or 1 and also "shrink" the
block means toward the superBlock mean. Defaults to TRUE.

eps If addOne = FALSE, the minimal deviation from 0 or 1 that the block mean/density
can take.

Value

- the value of the log-likelihood criterion for the partition clu on the network represented by M for
binary stochastic blockmodel.

Examples

Create a synthetic network matrix
set.seed(2022)
library(blockmodeling)
k<-2 # number of blocks to generate
blockSizes<-rep(20,k)
IM<-matrix(c(0.8,.4,0.2,0.8), nrow=2)
clu<-rep(1:k, times=blockSizes)
n<-length(clu)
M<-matrix(rbinom(n*n,1,IM[clu,clu]),ncol=n, nrow=n)
clu<-sample(1:2,nrow(M),replace=TRUE)
plotMat(M,clu) # Have a look at this random partition
ll_pre<-llStochBlock(M,clu) # Calculate its loglikelihood
res<-stochBlockORP(M,k=2,rep=10) # Optimizing the partition
plot(res) # Have a look at the optimized partition
ll_post<-llStochBlock(M,clu(res)) # Calculate its loglikelihood
We expect the loglikelihood pre-optimization to be smaller:
(-ll_pre)<(-ll_post)

stochBlock 7

stochBlock Function that performs stochastic one-mode and linked blockmodel-
ing by optimizing a single partition. If clu is a list, the method for
linked/multilevel networks is applied

Description

Function that performs stochastic one-mode and linked blockmodeling by optimizing a single par-
tition. If clu is a list, the method for linked/multilevel networks is applied

Usage

stochBlock(
M,
clu,
weights = NULL,
uWeights = NULL,
diagonal = c("ignore", "seperate", "same"),
limitType = c("none", "inside", "outside"),
limits = NULL,
weightClusterSize = 1,
addOne = TRUE,
eps = 0.001

)

Arguments

M A matrix representing the (usually valued) network. For multi-relational net-
works, this should be an array with the third dimension representing the relation.

clu A partition. Each unique value represents one cluster. If the network is one-
mode, than this should be a vector, else a list of vectors, one for each mode.
Similarly, if units are comprised of several sets, clu should be the list containing
one vector for each set.

weights The weights for each cell in the matrix/array. A matrix or an array with the same
dimensions as M.

uWeights The weights for each unin. A vector with the length equal to the number of units
(in all sets).

diagonal How should the diagonal values be treated. Possible values are:

• ignore - diagonal values are ignored
• seperate - diagonal values are treated seperately
• same - diagonal values are treated the same as all other values

limitType Type of limit to use. Forced to ’none’ if limits is NULL. Otherwise, one of
either outer or inner.

limits If diagonal is "ignore" or "same", an array with dimensions equal to:

8 stochBlock

• number of clusters (of all types)
• number of clusters (of all types)
• number of relations
• 2 - the first is lower limit and the second is upper limit

If diagonal is "seperate", a list of two array. The first should be as described
above, representing limits for off diagonal values. The second should be similar
with only 3 dimensions, as one of the first two must be omitted.

weightClusterSize

The weight given to cluster sizes (logprobabilites) compared to ties in loglikeli-
hood. Defaults to 1, which is "classical" stochastic blockmodeling.

addOne Should one tie with the value of the tie equal to the density of the superBlock be
added to each block to prevent block means equal to 0 or 1 and also "shrink" the
block means toward the superBlock mean. Defaults to TRUE.

eps If addOne = FALSE, the minimal deviation from 0 or 1 that the block mean/density
can take.

Value

A list of class opt.par normally passed other commands with StockBlockORP and containing:

clu A vector (a list for multi-mode networks) indicating the cluster to which each
unit belongs;

IM Image matrix of this partition;

weights The weights for each cell in the matrix/array. A matrix or an array with the same
dimensions as M.

uWeights The weights for each unit. A vector with the length equal to the number of units
(in all sets).

err The error as the sum of the inconsistencies between this network and the ideal
partitions.

ICL Integrated Criterion Likelihood for this partition

Author(s)

Aleš, Žiberna

References

Škulj, D., & Žiberna, A. (2022). Stochastic blockmodeling of linked networks. Social Networks,
70, 240-252.

See Also

stochBlockORP

stochBlockKMint 9

Examples

Create a synthetic network matrix
set.seed(2022)
library(blockmodeling)
k<-2 # number of blocks to generate
blockSizes<-rep(20,k)
IM<-matrix(c(0.8,.4,0.2,0.8), nrow=2)
clu<-rep(1:k, times=blockSizes)
n<-length(clu)
M<-matrix(rbinom(n*n,1,IM[clu,clu]),ncol=n, nrow=n)
clu<-sample(1:2,nrow(M),replace=TRUE)
plotMat(M,clu) # Have a look at this random partition
res<-stochBlock(M,clu) # Optimising the partition
plot(res) # Have a look at the optimised parition

Create a synthetic linked-network matrix
set.seed(2022)
library(blockmodeling)
IM<-matrix(c(0.8,.4,0.2,0.8), nrow=2)
clu<-rep(1:2, each=20) # Partition to generate
n<-length(clu)
nClu<-length(unique(clu)) # Number of clusters to generate
M1<-matrix(rbinom(n^2,1,IM[clu,clu]),ncol=n, nrow=n) # First network
M2<-matrix(rbinom(n^2,1,IM[clu,clu]),ncol=n, nrow=n) # Second network
M12<-diag(n) # Linking network
nn<-c(n,n)
k<-c(2,2)
Ml<-matrix(0, nrow=sum(nn),ncol=sum(nn))
Ml[1:n,1:n]<-M1
Ml[n+1:n,n+1:n]<-M2
Ml[n+1:n, 1:n]<-M12
plotMat(Ml) # Linked network
clu1<-sample(1:2,nrow(M1),replace=TRUE)
clu2<-sample(3:4,nrow(M1),replace=TRUE)
plotMat(Ml,list(clu1,clu2)) # Have a look at this random partition
res<-stochBlock(Ml,list(clu1,clu2)) # Optimising the partition
plot(res) # Have a look at the optimised parition

stochBlockKMint A function for using k-means to initialized the stochastic one-mode
and linked blockmodeling.

Description

A function for using k-means to initialized the stochastic one-mode and linked blockmodeling.

10 stochBlockKMint

Usage

stochBlockKMint(
M,
k,
nstart = 100,
perm = 0,
sharePerm = 0.2,
save.initial.param = TRUE,
deleteMs = TRUE,
max.iden = 10,
return.all = FALSE,
return.err = TRUE,
seed = NULL,
maxTriesToFindNewPar = perm * 10,
skip.par = NULL,
printRep = ifelse(perm <= 10, 1, round(perm/10)),
n = NULL,
nCores = 1,
useParLapply = FALSE,
cl = NULL,
stopcl = is.null(cl),
...

)

Arguments

M A square matrix giving the adjaciency relationg between the network’s nodes
(aka vertexes)

k The number of clusters used in the generation of partitions.
nstart number of random starting points for the classical k-means algorithm (for each

set of units). Defaults to 100.
perm Number or partitions obtained by randomly permuting the k-means partition - if

0, no permutations are made, only the original partition is analyzed.
sharePerm The probability that a unit will have their randomly assigned. Defaults to 0.20.
save.initial.param

Should the inital parameters(approaches, ...) of using stochBlock be saved.
The default value is TRUE.

deleteMs Delete networks/matrices from the results of to save space. Defaults to TRUE.
max.iden Maximum number of results that should be saved (in case there are more than

max.iden results with minimal error, only the first max.iden will be saved).
return.all If FALSE, solution for only the best (one or more) partition/s is/are returned.
return.err Should the error for each optimized partition be returned. Defaults to TRUE.
seed Optional. The seed for random generation of partitions.
maxTriesToFindNewPar

The maximum number of partition try when trying to find a new partition to
optimize that was not yet checked before - the default value is rep * 1000.

stochBlockKMint 11

skip.par The partitions that are not allowed or were already checked and should therefore
be skipped.

printRep Should some information about each optimization be printed.

n The number of units by "modes". It is used only for generating random parti-
tions. It has to be set only if there are more than two modes or if there are two
modes, but the matrix representing the network is one mode (both modes are in
rows and columns).

nCores Number of cores to be used. Value 0 means all available cores. It can also be a
cluster object.

useParLapply Should parLapplyLB be used (otherwise foreach is used). Defaults to true as it
needs less dependencies. It might be removed in future releases and only allow
the use of parLapplyLB.

cl The cluster to use (if formed beforehand). Defaults to NULL.

stopcl Should the cluster be stopped after the function finishes. Defaults to is.null(cl).

... Arguments passed to other functions, see stochBlock.

Value

A list containing:

M The one- or multi-mode matrix of the network analyzed

res If return.all = TRUE - A list of results the same as best - one best for each
partition optimized.

best A list of results from stochblock, only without M.

err If return.err = TRUE - The vector of errors or inconsistencies of the empirical
network with the ideal partitions.

nIter The vector of the iterations on each starting partition. If many of the values
equalmaxiter, then maxiter may be too small.

checked.par If selected - A list of checked partitions. If merge.save.skip.par is TRUE, this
list also includes the partitions in skip.par.

call The call to this function.

initial.param If selected - The initial parameters are used.

Author(s)

Aleš, Žiberna

References

Škulj, D., & Žiberna, A. (2022). Stochastic blockmodeling of linked networks. Social Networks,
70, 240-252.

12 stochBlockORP

stochBlockORP A function for optimizing multiple random partitions using stochastic
one-mode and linked blockmodeling. Similar to optRandomParC, but
calling stochBlock for optimizing individual partitions.

Description

A function for optimizing multiple random partitions using stochastic one-mode and linked block-
modeling. Similar to optRandomParC, but calling stochBlock for optimizing individual partitions.

Usage

stochBlockORP(
M,
k,
rep,
save.initial.param = TRUE,
deleteMs = TRUE,
max.iden = 10,
return.all = FALSE,
return.err = TRUE,
seed = NULL,
parGenFun = blockmodeling::genRandomPar,
mingr = NULL,
maxgr = NULL,
addParam = list(genPajekPar = TRUE, probGenMech = NULL),
maxTriesToFindNewPar = rep * 10,
skip.par = NULL,
printRep = ifelse(rep <= 10, 1, round(rep/10)),
n = NULL,
nCores = 1,
useParLapply = FALSE,
cl = NULL,
stopcl = is.null(cl),
...

)

Arguments

M A square matrix giving the adjaciency relationg between the network’s nodes
(aka vertexes)

k The number of clusters used in the generation of partitions.

rep The number of repetitions/different starting partitions to check.
save.initial.param

Should the inital parameters(approaches, ...) of using stochBlock be saved.
The default value is TRUE.

stochBlockORP 13

deleteMs Delete networks/matrices from the results of to save space. Defaults to TRUE.

max.iden Maximum number of results that should be saved (in case there are more than
max.iden results with minimal error, only the first max.iden will be saved).

return.all If FALSE, solution for only the best (one or more) partition/s is/are returned.

return.err Should the error for each optimized partition be returned. Defaults to TRUE.

seed Optional. The seed for random generation of partitions.

parGenFun The function (object) that will generate random partitions. The default function
is genRandomPar. The function has to accept the following parameters: k (num-
ber o of partitions by modes, n (number of units by modes), seed (seed value
for random generation of partition), addParam (a list of additional parameters).

mingr Minimal allowed group size.

maxgr Maximal allowed group size.

addParam A list of additional parameters for function specified above. In the usage section
they are specified for the default function genRandomPar.

maxTriesToFindNewPar

The maximum number of partition try when trying to find a new partition to
optimize that was not yet checked before - the default value is rep * 1000.

skip.par The partitions that are not allowed or were already checked and should therefore
be skipped.

printRep Should some information about each optimization be printed.

n The number of units by "modes". It is used only for generating random parti-
tions. It has to be set only if there are more than two modes or if there are two
modes, but the matrix representing the network is one mode (both modes are in
rows and columns).

nCores Number of cores to be used. Value 0 means all available cores. It can also be a
cluster object.

useParLapply Should parLapplyLB be used (otherwise foreach is used). Defaults to true as it
needs less dependencies. It might be removed in future releases and only allow
the use of parLapplyLB.

cl The cluster to use (if formed beforehand). Defaults to NULL.

stopcl Should the cluster be stopped after the function finishes. Defaults to is.null(cl).

... Arguments passed to other functions, see stochBlock.

Value

A list of class "opt.more.par" containing:

M The one- or multi-mode matrix of the network analyzed

res If return.all = TRUE - A list of results the same as best - one best for each
partition optimized.

best A list of results from stochblock, only without M.

err If return.err = TRUE - The vector of errors or inconsistencies = -log-likelihoods.

ICL Integrated classification likelihood for the best partition.

14 stochBlockORP

checked.par If selected - A list of checked partitions. If merge.save.skip.par is TRUE, this
list also includes the partitions in skip.par.

call The call to this function.

initial.param If selected - The initial parameters are used.

Random.seed .Random.seed at the end of the function.

cl Cluster used for parallel computations if supplied as an input parameter.

Warning

It should be noted that the time needed to optimise the partition depends on the number of units (aka
nodes) in the networks as well as the number of clusters due to the underlying algorithm. Hence,
partitioning networks with 100 units and large number of blocks (e.g., >5) can take a long time
(from 20 minutes to a few hours or even days).

Author(s)

Aleš, Žiberna

References

Škulj, D., & Žiberna, A. (2022). Stochastic blockmodeling of linked networks. Social Networks,
70, 240-252.

Examples

Simple one-mode network
library(blockmodeling)
k<-2
blockSizes<-rep(20,k)
IM<-matrix(c(0.8,.4,0.2,0.8), nrow=2)
if(any(dim(IM)!=c(k,k))) stop("invalid dimensions")

set.seed(2021)
clu<-rep(1:k, times=blockSizes)
n<-length(clu)
M<-matrix(rbinom(n*n,1,IM[clu,clu]),ncol=n, nrow=n)
diag(M)<-0
plotMat(M)

resORP<-stochBlockORP(M,k=2, rep=10, return.all = TRUE)
resORP$ICL
plot(resORP)
clu(resORP)

Linked network
library(blockmodeling)
set.seed(2021)
IM<-matrix(c(0.8,.4,0.2,0.8), nrow=2)
clu<-rep(1:2, each=20)

weightsMlLoglik 15

n<-length(clu)
nClu<-length(unique(clu))
M1<-matrix(rbinom(n^2,1,IM[clu,clu]),ncol=n, nrow=n)
M2<-matrix(rbinom(n^2,1,IM[clu,clu]),ncol=n, nrow=n)
M12<-diag(n)
nn<-c(n,n)
k<-c(2,2)
Ml<-matrix(0, nrow=sum(nn),ncol=sum(nn))
Ml[1:n,1:n]<-M1
Ml[n+1:n,n+1:n]<-M2
Ml[n+1:n, 1:n]<-M12
plotMat(Ml)

resMl<-stochBlockORP(M=Ml, k=k, n=nn, rep=10)
resMl$ICL
plot(resMl)
clu(resMl)

weightsMlLoglik Computes weights for parts of the multilevel network based on random
errors using the SS approach with complete blocks only (compatible
with k-means)

Description

Computes weights for parts of the multilevel network based on random errors using the SS approach
with complete blocks only (compatible with k-means)

Usage

weightsMlLoglik(
mlNet,
cluParts,
k,
mWeights = 1000,
sumFun = sd,
nCores = 0,
weightClusterSize = 0,
paramGenPar = list(genPajekPar = FALSE),
...

)

Arguments

mlNet A multilevel/linked network - The code assumes only one relation –> a matrix.

cluParts A partition spliting the units into different sets

k A vecotor of number of clusters for each set of units in the network.

16 weightsMlLoglik

mWeights The number of repetitions for computing random errors. Defaults to 1000

sumFun The function to compute the summary of errors, which is then used to compute
the weights by computing 1/summary. Defaults to sd.

nCores The number of to use for parallel computing. 0 means all available - 1, 1 means
only once core - no parallel computing.

weightClusterSize

The weight given to cluster sizes. Defalults to 0, as only this is weighted my the
tie-based weights.

paramGenPar The parameter addParam from genRandomPar (see documentation there). De-
fault here is paramGenPar=list(genPajekPar = FALSE), which is different from
the default in genRandomPar. The same value is used for generating partitions
for all partitions.

... Paramters passed to llStochBlock

Value

Weights and "intermediate results":

errArr A 3d array of errors (mWeights for each part of the network)

errMatSum errArr summed over all repetitions.

weightsMat A matrix of weights, one for each part. An inverse of errMatSum with NaNs
replaced by zeros.

Author(s)

Aleš, Žiberna

References

Škulj, D., & Žiberna, A. (2022). Stochastic blockmodeling of linked networks. Social Networks,
70, 240-252.

See Also

llStochBlock; ICLStochBlock

Index

findActiveParam, 2

genRandomPar, 13, 16

ICLStochBlock, 3, 16

llStochBlock, 4, 5, 16

stochBlock, 7, 11, 13
stochBlockKMint, 9
stochBlockORP, 8, 12

weightsMlLoglik, 4, 15

17

	findActiveParam
	ICLStochBlock
	llStochBlock
	stochBlock
	stochBlockKMint
	stochBlockORP
	weightsMlLoglik
	Index

